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A simulation of the flow in a jet has been carried out with the use of the Reynolds-averaged, space-filtered
Navier–Stokes equations closed by the k–ε model of turbulence and the subgrid RNG model of eddy viscosity.
The results of calculations carried out on the basis of the k–ε model and the results of simulation of large
vortices are in quantitative and qualitative agreement with the corresponding measurement data, which is evi-
dence in favor of the main laws defining the decay of the gas-dynamic behavior of cold-gas submerged jets
and the fluctuations of their parameters.

Introduction. In the literature, for example in [1, 2], there is a vast amount of material on mathematical
simulation of subsonic isothermal turbulent submerged jets and jets in cocurrent flows and on measurement of their
characteristics.

The characteristics of incompressible-fluid and compressible-gas jets were measured in [3] (the kinetic-en-
ergy balance and the averaged and fluctuating parameters at Re = 105), [4] (the fluctuations of the longitudinal ve-
locity at 0.02 ≤ M ≤ 0.96 and 104 ≤ Re ≤ 5.9⋅105), [5] (the distributions of the kinetic turbulent energy and the rate
of its dissipation in the initial region of a jet, the Taylor microscale and integral scale of turbulence), [6] (the rate
of dissipation of the kinetic turbulent energy), [7] (the turbulent diffusion and the correlations of the velocity and
concentration at Re = 1.1⋅104), [8] (the moments of velocity measured to the third order at Re = 9.55⋅104, [9] (the
jet in a cocurrent flow and the correlation moments of velocity and concentration fluctuations measured to the third
order at Re = 1.05⋅104).

The approximate approaches used for description of the flow in a jet are based on the semiempirical Prandtl
and Taylor theories of free turbulence and involve consideration of the initial and main regions of a flow on the as-
sumption that the distributions of the excess momentum at the cross sections of the jet are locally similar [1, 2].

Numerical calculations were carried out with different models of turbulence, in particular the model of mixing
[1], the k–ε model [10, 11], and the equations of transfer of Reynolds stresses [12].

The similarity of the flows in a jet and in the boundary layer allows one to write the Reynolds-averaged
Navier–Stokes equations in the parabolic form and numerically integrate them effectively. For simplicity, the coordi-
nates used are transformed on condition that the excess-momentum flow in an isobaric jet is constant, which makes it
possible to use a computational region in the form of a finite-size band instead of the infinitely large region of inte-
gration in physical variables [11, 12]. New independent variables can be used in the case where the excess-velocity
profile is monotone; this condition is usually fulfilled at any distance from the exit section of a nozzle. Since boundary
layers are formed at the inner and outer walls of the nozzle, the distribution of the parameters of the flow at the initial
cross section is nonmonotone, which changes the excess momentum of the jet.

Numerical integration of the Reynolds-averaged Navier–Stokes equations allows one to obtain the distributions
of the time-average and fluctuating characteristics of a flow. The calculation data on the velocity distribution, obtained
with the use of the k–ε model, are in good agreement with the corresponding measurement data; however, the calcu-
lations of the kinetic turbulent energy and the degree of expansion of a jet give overstated values of these quantities.
If there is a cocurrent flow, the calculated values of the velocity exceed the measured ones [1, 10, 11].

One of the features of the free shear flows is the presence of large-scale vortex formations in the mixing
layer [13]. Control of coherent structures by amplification or destruction of them, for example with the use of acoustic
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waves of different intensity and frequency, makes it possible to effectively act on the processes of transfer and heat
exchange.

The topology of large-scale vortex structures in the mixing layer is investigated experimentally and by numeri-
cal simulation [13]. In the calculations, methods of direct numerical simulation, methods of simulations of large vor-
tices, and combined methods are used.

A direct numerical simulation and a simulation of large vortices of the flow in an incompressible-fluid jet
were carried out in [14] (Re = 3.6⋅103, [15] (Re = 104, [16] (Re = 2⋅103 and Re = 104), [17] (Re = 4⋅103), and [18]
(Re = 2.5⋅104). As a subgrid model, the Smagorinskii model [15, 18], the structural-function model [17] (it is reduced
to the Smagorinskii model under certain conditions), and the model of similar scales [15] are used. Some calculations
are carried out in the axisymmetric formulation [15]. A comparison of the calculation data with the measurement data
has shown that the Smargonskii model understimates the intensity of the turbulence in the mixing zone [15]. The dis-
agreement between the data is explained by the intermittancy of the flow and the reverse transfer of energy from the
small vortices to the large ones (unlike the model of similar scales, the Smagorinskii model takes no account of the
reverse energy transfer). The authors of [16], take the notion of direct numerical simulation to mean approaches in
which the eddy viscosity is determined by the pitch of a difference grid. The calculations carried out in [16] allow one
to simulate a turn of axes in a free rectangular jet and define the anisotropic spreading along a wall in the direction
perpendicular to the axis of the jet flowing from an annular nozzle. The mixing of different-density jets was consid-
ered in [17]. In [18], prominence was given to the processes of formation of a mixing layer in the initial region of a
jet, the development of this layer downstream of the flow, and the influence of the coefficient of the subgrid Smagor-
inskii model on the characteristics of the jet.

Incompressible-gas jets were investigated in [19] (M = 0.9, Re = 3.6⋅104, [20] (Re = 6⋅103 and Re = 105),
[21] (Re = 7.6⋅103 and Re = 2.76⋅104), [22] (M = 0.9, Re = 104), [23] (M = 0.9, Re = 104), [24] (M = 0.9,
2.5⋅103 ≤ Re ≤ 4⋅105). As a subgrid model, the Smagorinskii model [21] and the dynamic model of [19–21] were used.
In [22, 23], the calculations were carried out on a coarse grid without recourse to any subgrid model, and the dissipa-
tion mechanism was introduced by the difference scheme (this approach is given the name monotonically integrated
LES). The data obtained in [24] point to the fact that the approach based on the explicit filtration of the Navier–
Stokes equations and the approximate decomposition of the velocity field is promising. The data of numerical simula-
tion are used for determining the sound field of a jet [19, 22, 23] as well as for investigating the methods of external
action on the structure of a jet and intensification of the turbulent mixing [20].

The calculations of incompressible-fluid jets [14–18] and compressible-gas jets [19–24] were carried out for a
fairly narrow range of parameters characterizing the outflow of a jet with the use of a coarse grid. In a number of
works, for example in [15], the axisymmetric formulation of the problem, representing a three-dimensional approach,
was used, which is in contradiction with the views on simulation of large vortices. A comparatively small number of
works are devoted to the study of the characteristics of the near flow in a jet.

In the present work, the flow in a jet was defined using the approach based on the solution of the Reynolds-
averaged Navier–Stokes equations, and large vortices were simulated by integration of the space-filtered Navier–Stokes
equations. The main equations were closed with the use of the k–ε model of turbulence and the subgrid RNG model
of eddy viscosity. The results of calculations were compared to one another by the average parameters of the flow and
to the data of a physical experiment.

Main Equations. We consider a subsonic turbulent submerged jet flowing from an annular nozzle. The origin
of coordinates is positioned at the nozzle exit section. The direction of the positive x coordinate is coincident with the
direction of propagation of the jet. As the characteristic scales, the radius of the nozzle exit section ra was used for
the variables with the dimensions of length, and the velocity ua and temperature Ta of the gas at the nozzle exit sec-
tion were used for the variables with the dimensions of velocity and temperature. It is assumed that the gas tempera-
ture at the nozzle exit section is equal to the temperature of the environment.

Equations in conservative variables. In the Cartesian coordinate system (x, y, z), a nonstationary flow of a vis-
cous compressible gas is described by the following equation:

∂Q

∂t
 + 
∂Fx

∂x
 + 
∂Fy

∂y
 + 
∂Fz

∂z
 = H , (1)
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which is supplemented by the equation of state of a perfect gas

p = (γ − 1) ρ 
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The vector of conservative variables Q and the vectors of flows Fx, Fy, Fz have the following form:
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The components of the viscous-stress tensor and the components of the heat-flow vector are determined from the relations

τij = µe 




∂vi

∂xj
 + 
∂vj

∂xi
 − 

2

3
 
∂vk

∂xk
 δij



 ,   qi = − λe 

∂T

∂xi
 .

Equation (1) can be used for the description of both laminar and turbulent flows. In simulation of turbulent
flows, the effective viscosity is calculated as the sum of the molecular and eddy viscosities, and the effective heat con-
duction is expressed in terms of the eddy viscosity and the Prandtl number.

The boundary conditions are set and the calculation data are processed in the cylindrical (x, r, θ) and not the
Cartesian coordinate system (x, y, z). The radial and circular velocity components are related to the Cartesian velocity
components by the relations

vr = 
vyy + vzz

(y2
 + z

2)1
 ⁄ 2

 ,   vθ = 
vzy + vyz

(y2
 + z

2)1
 ⁄ 2

 .

Because of the symmetry of the computational region and the boundary conditions, the time-average circular velocity
is equal to zero.

Equations of the model of turbulence. Equation (1) is written in time-average quantities. The statistical char-
acteristics of turbulence are determined by the two-parameter k–ε model of turbulence with Launder corrections for
constants cµ and cε2 [25].

The equations of the k–ε model of turbulence have the following form:

∂ρk

∂t
 + (ρv⋅∇) k = ∇ 








µ + 

µt

σk




 ∇k




 + P − ρε ; (2)

∂ρε
∂t

 + (ρv⋅∇) ε = ∇ 







µ + 

µt

σε




 ∇ε




 + 
ε
k

 (cε1P − cε2ρε) . (3)

The term defining the production of turbulence is determined from the relation
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P = µt S
1 ⁄ 2 Ω

1 ⁄ 2 ,

where

S = (2SijSij)
2
 ;   Ω = (2ΩijΩij)

2
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 − 
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 .

The turbulent viscosity is calculated by the Kolmogorov–Prandtl formula µt = cµρk2 ⁄ ε. We assign to the constants of
the model of turbulence the following values: cµ = 0.09, σk = 1.0, σε = 1.3, cε1 = 1.44, cε2 = 1.92, and Prt = 0.7.
The Launder corrections to these constants are determined as [25]

cµ = 0.09 − 0.04f ,   cε2 = 1.92 − 0.0667f ,

where

f = 




δ
2∆u

 




duc

dx
 − 




duc
dx












 .

The term ∆u means the characteristic difference between the velocities. The thickness of the mixing zone is determined
on condition that the excess-momentum pulse is equal to zero.

Subgrid model. Equation (1) is written relative to the space-filtered quantities. In the subgrid model of viscos-
ity constructed on the basis of the theory of renormalized groups, the calculation of the effective viscosity is reduced
to the solution of the nonlinear algebraic equation [26]

µe = µ [1 + H (X − A)]1 ⁄ 3 ,   X = 
µs

2µe

µ3
 ,

where A = 100. The subgrid viscosity is determined from a relation that differs from the Smagorinskii model by a
constant factor:

µs = ρ (CR∆) S
2
 ,

where CR = 0.157. At X >> C, the Smagorinskii formula with a model coefficient CS = (2CR)1 ⁄ 4 ⁄ (2π) = 0.119 is ob-
tained.

In the completely turbulent region of flow, µs >> µ; therefore, µe C µs and the RNG model is reduced to the
Smagorinskii model. In the weakly turbulent region, the argument of the Heaviside function became negative, which is
why µe C µ. A correct representation of the effective viscosity in the laminar and completely turbulent regions of the
flow makes it possible to use the RNG model for calculating the transient regimes of flow.

In the case of fairly low values of the turbulent Mach number (at Mt < 0.4), the correction for the compressi-
bility weakly influences the results of calculations [27].

The width of the filter ∆ is related to the size of the pitch of a difference grid:

∆ = V
1 ⁄ 3 = (∆x∆y∆z)1

 ⁄ 3 ,

 where ∆x, ∆y, ∆z are the grid pitches in the coordinate directions x, y, z.
Initial and Boundary Conditions. The conditions of outflow of the jet being considered weakly influence the

characteristics of the flow at fairly high Reynolds numbers (Re > 5⋅104), moderate Mach numbers, and an initial level
of turbulence that does not exceed 3–4% [4].

The input boundary of the computational region is coincident with the nozzle exit section (x = 0), and, for
the velocity at it, the following boundary conditions are set:
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vx (r) = 




ua (r),
0 ,

     
r ≤ ra ;

r > ra .

At the portion of the boundary, coincident with the nozzle exit section (at r ≤ ra), the distributions of the velocity,
temperature, and turbulence characteristics are fixed. In the core of the flow (at r ≤ 0.9ra) these parameters are held
constant (vx = ua, T = Ta, k = ka, ε = εa), and near the walls of the nozzle at 0.9 ≤ rar ≤ ra the velocity and turbu-
lent viscosity decrease, as the wall is approached, to zero values by the power law. The derivative of the static pres-
sure with respect to the normal to the boundary is taken to be equal to zero.

When large vortices, caused by the pulsations of the flow in a jet, are simulated, nonstationary boundary con-
ditions should be set at the input cross section [16]. The free shear flows are unstable, and oscillations in them arise
in the absence of external sources of disturbances.

To formulate the boundary conditions correctly, it is necessary to calculate the flows in the circular tube and
the boundary layer at the outer surface of the nozzle [21, 23] (a part of the nozzle falls within the computational re-
gion). Since this problem is laborious, the flow in the tube is not calculated and, at the nozzle exit section, the veloc-
ity profile, on which accidental sinusoidal disturbances are emposed, is determined [19]:

vx (r, t) = 
ua

3
 



1 + tanh 





0.5 − r
2δ








 1 + α sin  (St t) .

In the calculations, δ ⁄ ra = 0.1, St = 0.45, and α = 0.0025. Small accidental disturbances are also imposed on the ra-
dial distribution of the circular velocity:

vθ (r, t) = 0.025 exp 

− 3 (1 − r)2

 ϕ ,

where ϕ is a random number from the uniform distribution over the interval [−0.5, 0.5]. The radial velocity at the
nozzle exit section vr(r, t) = 0.

The boundary conditions away from the submerged jet (at the lower and upper boundaries) following from
the nozzle are determined by the ejection properties of the jet — away from the jet there exists an induced poten-
tial flow directed to the jet. The properties and parameters of this flow are unknown in advance and are determined
by the jet itself. An incorrect formulation of the velocity distribution at the outer boundary of the computational re-
gion distorts the field of the flow [16]. The calculations of stationary flows show that the best results are obtained
with the boundary conditions determined on the basis of an exact solution defining the potential flow outside the
turbulent circular jet [28].

In the process of solving the Reynolds equations the static pressure is determined at the output of the
computational region and the velocity components are extrapolated with an accuracy to the first order from within
the computational region (soft boundary conditions). When the method of large vortices is realized at the bounda-
ries, through which gas comes out from the computational region, nonreflecting boundary conditions (convective-
transfer conditions) are used for the velocity. It is assumed that the gas is at rest at the initial instant of time
(vx = vy = vz = 0, p = 1.013⋅105 Pa, T = 288 K).

Numerical Method. The discretization of Eq. (1) and the equations of the model of turbulence (2) and (3) is
carried out by the control-volume method and the difference schemes of high time and space resolution [29]. The time
discretization is carried out with the use of the five-step Runge–Kutta method, and the convective and viscous flows
are discretized using the modified MUSCL scheme and centered difference formulas of the second order.

The system of difference equations is solved by the multigrid method on the basis of the complete-approxi-
mation scheme. As the smoothing algorithm, the generalized method of weighted discrepancies is used. A sequence of
embedded grids is constructed using the method of collapsible faces [29]. To prevent instability of the numerical so-
lution in the low-velocity regions of the flow, the Jacobi method of block preconditioning is used in the calculations
based on the compressible Navier–Stokes equations. The computational procedure is realized in the form of a machine
code in the Fortran programming language and the C ⁄ C++ language. The computational procedure is parallelized with
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the use of the MPI interface of interprocessor interaction. The calculations where carried out on an IBM SP ⁄ 1600 su-
percomputer with eServer–pServer-690 units and a Power 4+ processor operating at 1.7 GHz. The supercomputer cen-
ter is located at the Central laboratory (Daresbury Laboratory) of the Research Councils in Warrington (United
Kingdom).

Results of Calculations. The initial parameters were as follows: ra = 5 mm, ua = 50–210 m ⁄ sec, Ta = 300 K,
pa = 1.013⋅105 Pa, ka = 0.01ua

2, εa = 0.002ua
2 ⁄ ra. The parameters of the flow at the cut of the nozzle correspond to the

Mach numbers 0.14 ≤ M ≤ 0.68 and the Reynolds numbers 3.45⋅104 ≤ Re ≤ 1.72⋅105.
The computational region had the form of a truncated pyramid. The length of the computational region was

equal to Lx = 250ra. It was assumed that its width and height are equal to Ly = Lz = 10ra at the input cross-section
and Ly = Lz = 40ra at the output cross section.

At Re = 1.72⋅105 (the largest Reynolds number used in the calculations), a grid containing 350 × 150 × 150
= 7,875,000 nodes was used. The grid was bunched in the longitudinal direction to the cut of the nozzle. It was as-
sumed that the pitch downstream of the cross section x = 15ra is practically constant with respect to the variable x
and then increases gradually by the geometric progression law. The grid at the cross section of the nozzle is bunched
to the edges of the nozzle. The pitches along the coordinate directions are as follows: ∆xmin = 0.08ra, ∆xmax =
0.25ra, ∆ymin = ∆zmin = 0.02ra, ∆ymax = ∆zmax = 0.1ra. The time step ∆t = 0.1ra

 ⁄ ua. The calculations were carried out
until ∆t = 2000ra

 ⁄ ua.
The Kolmogorov and Taylor microscales of length in a circular jet are related to the Reynolds number at the

cut of the nozzle and the axis coordinate (at x ⁄ ra > 140) by the relations [6, 9]

lK = (48Re
3)−1 ⁄ 4 x ,   lT = 0.88Re

−1 ⁄ 2 x .

In the range of Reynolds numbers being considered, we obtain that 4.5⋅10−5 ≤ lK ⁄ x ≤ 1.5⋅10−5 and 2.12⋅10−3 ≤ lT ⁄ x ≤
4.73⋅10−3. At Re = 1.72⋅105 and x ⁄ ra = 150, ∆xmax = 8lK and ∆ymax = ∆zmax = 6lK.

An instantaneous pattern of flow in the jet is visualized with the use of the velocity vortex defined as 

Ω = ∇ × v = Ωx
2
 + Ωy

2
 + Ωz

2


1 ⁄ 2
 .

The lines of the velocity-vortex level at the cross sections of the jet flow are presented in Fig. 1.
In the shear layer of the jet there are large-scale vortex structures having the form of toroidal axially symmet-

ric vortices arising at any distance from the nozzle exit section (this distance is equal to 1–2 diameters of the nozzle)
and propagating in the mixing layer downstream of the flow. The coherent structures at the radial cross section of the
jet represent ellipses, which is evidence of the anisotropy of the turbulent pulsations in the region where there are
large-scale vortices. The vortex structures in the initial region of the jet have a fairly small characteristic scale. Down-
stream of the initial region, vortices of larger characteristic scale arise; in this case, the momentum exchange between
the jet and the surrounding fluid intensifies.

The generation of vortices is due to the Kelvin–Helmholtz instability of the shear layer. The maximum and
minima of the vorticity are approximately at the center of the vortices. At small Reynolds numbers, the jet near the
nozzle exit section is practically axisymmetric. When the Reynolds number increases to Re = 104, with increase in the

Fig. 1. Lines of the velocity-vortex level at the instant t = 0.15 sec at the middle
cross section of the jet (a) and at the sections x ⁄ ra = 10 (b) and x ⁄ ra = 80 (c).
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distance from the nozzle exit section there appears a weak sinusoidal wave. A further increase in the Reynolds number
results in the flow becoming completely three-dimensional and turbulent.

The profiles of the average longitudinal velocity normalized to the velocity at the axis of the jet are practi-
cally universal at x ⁄ ra > 80 (Fig. 2, Re = 105), which agrees with the measurement data [3, 7]. The results of calcu-
lations by the k–ε model and the method of simulation of large vortices are in fairly good agreement. In this case, the
first model gives a less filled velocity profile at the cross section of the jet.

The development of the secondary flows in the jet is determined by the correlations svr′2 t, svθ′2 t, and svr′ vθ′ t;
in this case, svr′ vθ′ t = 0 in the circular axisymmetric jet.

The root-mean-square value of the longitudinal-velocity pulsations at the axis of the jet (at x ⁄ ra > 80) exceeds
the corresponding value of the radial velocity by approximately 10–12%, which agrees with the data of [3]; according
to these data, the indicated difference is 12–16%. A similarity between the profiles of the longitudinal-velocity fluctua-
tions was detected at x ⁄ ra > 140 (Fig. 3a), and a similarity between the fluctuations of the radial and circular velocities
was detected at x ⁄ ra > 180 and x ⁄ ra > 200 respectively (Fig. 3b and c). The calculation results presented correspond
to Re = 105. The intensities of turbulence in the radial, circular, and axial directions are of the same order of magni-
tude (approximately 0.22, 0.24, and 0.27 for the radial, circular, and longitudinal velocity respectively). Note that the
distribution of longitudinal-velocity fluctuations has a local maximum, while such a maximum is absent in the distri-
butions of the radial-velocity and circular-velocity fluctuations. The largest difference between the results obtained and
the measurement data was detected in the near-axis region of the jet.

The distributions of the Reynolds stresses are in good agreement with the data of [7, 8], however the quanti-
tative difference at any points reaches 30% (Fig. 4, Re = 104). In this case, the data of the physical experiment [3]
give a less-filled profile of the Reynolds stresses, and their maximum value is smaller than the calculated one, ob-
tained by simulation of large vortices. In this case, the k–ε model gives a much smaller Reynolds-stress maximum by
approximately 1.5 times positioned at larger values of the transformed coordinate r ⁄ x as compared to this maximum
given by the method of simulation of large vortices and the physical-experiment data. The radial maximum of the
Reynolds stresses is positioned at a fairly close distance to the maximum of the average shear stresses detected at
r ⁄ x = 0.055.

The main contribution to the kinetic turbulent energy is made by the turbulence arising due to the velocity
gradient as well as by the terms defining the correlation moments of the pressure and velocity-gradient fluctuations.
The positions of their maxima correspond to each other and take place at r ⁄ x = 0.05. The processing of the data ob-
tained in the process of simulation of large vortices and the results of calculations by the k–ε model has shown that
the data on the kinetic turbulent energy are in better agreement than the data on the Reynolds-stress distributions.

In the central region of the jet, the triple correlations svx′ vr′ vr′ t and svx′ vθ′ vθ′ t have small negative values, which
correlates with the data of [7, 8] but is in contradiction with the data of [3]. These quantities have a maximum at
r ⁄ x = 0.075 and change the sign at r ⁄ x = 0.035.

Fig. 2. Profiles of the longitudinal velocity compared to the data of [3] (dark
points) and [7] (light points): 1) calculation by the k–ε model; 2) results of
simulation of large vortices.
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The distributions of the velocity fluctuations over the cross sections of the initial and main regions of the jet
are locally similar only in the outer zone of mixing (at r ⁄ δ > 0.3). The large spread of the experimental data near the
boundary of the jet is explained by the fact that the flow is intermittent in character. The maximum value of the tur-
bulent pulsations in the mixing zone reaches 15–16% of the average velocity at a degree of turbulence at the nozzle-

Fig. 3. Distributions of the root-mean-square value of fluctuations of the axial (a),
radial (b), and circular (c) velocities determined in the present work (curve 1) and
the corresponding data of [3] (curve 2), [7] (curve 3), and [8] (curve 4).

Fig. 4. Distributions of the Reynolds stresses: 1) calculation by the k–ε model;
2) results of simulation of large vortices; 3) data of [3]; 4) data of [7]; 5) data
of [8].
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exit section of 1.5–2% (jets with a natural initial turbulence). Downstream of the flow, the fluctuations of the longitu-
dinal velocity at the cross section equalize.

An increase in the turbulence at the nozzle exit section intensifies the mixing of a jet with the surrounding
gas and decreases the remote action of the jet. In this case, the distributions of the kinetic turbulent energy along the
axis of the jet at small and large initial levels of turbulence are substantially different. In the case where the turbu-
lence at the nozzle-exit section is small, the kinetic energy of turbulence initially increases, reaches a maximum, and
then decreases slowly. At a high level of turbulence at the nozzle-exit section, the kinetic turbulent energy initially de-
creases sharply along the axis of the jet, then increases, reaches a maximum, and then decreases downstream by the
power law. In the case where the initial turbulence is very large, the kinetic turbulence energy continuously decreases
downstream of the flow.

Conclusions. Large vortices in the flow of a subsonic isothermal turbulent submerged jet flowing from a cir-
cular nozzle have been simulated. The results of calculations were compared with the results of the numerical simula-
tion carried out on the basis of solution of the Reynolds-averaged Navier–Stokes equations and the equations of the
two-parameter k–ε model of turbulence as well as with the data of a physical experiment.

The calculation data are in qualitative and quantitative agreement with the measurement data, which substan-
tiates the main laws on decay of the gas-dynamic behavior of cold-gas submerged jets and the fluctuations of their pa-
rameters.

NOTATION

A, constant of the subgrid model; cµ, cε1, cε2, constants of the model of turbulence; CR, CS, constants of the
subgrid model; e, total energy of a unit mass, J ⁄ kg; f, damping function; F, vector of a flow; H, source term; H,
Heaviside function; k, kinetic turbulent energy, m2 ⁄ sec2; lK, Kolmogorov scale, m; lT, Taylor scale, m; M, Mach num-
ber; p, pressure, Pa; P, term of turbulence production, m2 ⁄ sec3; Pr, Prandtl number; q, heat flow, W ⁄ m2; Q, vector of
conservative variables; Re, Reynolds number; S, tensor of deformation rates; St, Strouhal number; t, time, sec; T, tem-
perature, K; u, longitudinal velocity, m ⁄ sec; vx, vy, vz, velocity components in the Cartesian coordinate system, m ⁄ sec;
vx, vr, vθ, velocity components in the cylindrical coordinate system, m ⁄ sec; v, velocity vector, m ⁄ sec; V, volume, m3;
x, y, z, Cartesian coordinates, m; x, r, θ, cylindrical coordinates, m; X, argument of the Heaviside function; α, ampli-
tude of disturbances, m; γ, relation between the specific heat capacities; δ, momentum thickness of boundary layer, m;
δij, Kronecker symbol; ∆, thickness of the filter, m; ε, rate of turbulent-energy dissipation, m2 ⁄ sec3; λ, heat conduc-
tivity, W ⁄ (m⋅K); µ, dynamic viscosity, kg ⁄ (m⋅sec); ρ, density, kg ⁄ m3; σk, σε, constants of the model of turbulence; τ,
shear stress, N ⁄ m; ϕ, random number; ΩΩ, velocity vortex. Subscripts: a, nozzle-exit section; c, axis; e, effective; i, j,
tensor indices; min, minimum; max, maximum; s, subgrid; t, turbulent.
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